Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.574
Filtrar
1.
Rom J Ophthalmol ; 68(1): 65-71, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617721

RESUMO

Leber's hereditary optic neuropathy (LHON) is the most common maternally inherited disease linked to mitochondrial DNA (mtDNA). The patients present with subacute asymmetric bilateral vision loss. Approximately 95% of the LHON cases are caused by m.3460G>A (MTND1), m.11778G>A (MTND4), and m.14484T>C (MTND6) mutations. The hallmark of hereditary optic neuropathies determined by mitochondrial dysfunction is the vulnerability and degeneration of retinal ganglion cells (RGC). We present the case of a 28-year-old man who came to our clinic complaining of a subacute decrease in visual acuity of his left eye. From his medical history, we found out that one month before he had the same symptoms in the right eye. From the family history, we noted that an uncle has had vision problems since childhood. We carried out complete blood tests, including specific antibodies for autoimmune and infectious diseases. Laboratory tests and MRI were within normal limits. A blood test of the mtDNA showed the presence of 11778 G>A mutation on the mtND6 gene. The medical history, the fundus appearance, the OCT, and the paraclinical investigations, made us diagnose our patient with Leber's hereditary optic neuropathy. As soon as possible, we began the treatment with systemic idebenone, 900 mg/day. We examined the patient 2, 6, and 10 weeks after initiating the treatment. Abbreviations: LHON = Leber's Hereditary Optic Neuropathy, mtDNA = mitochondrial DNA, VA = visual acuity, RE = right eye, LE = left eye, OCT = Optical coherence tomography, pRNFL = peripapillary retinal nerve fiber layer, GCL = retinal ganglion cells layer, MRI = magnetic resonance imaging, VEP = visual evoked potentials, VEP IT = VEP implicit time, VEP A = VEP amplitude.


Assuntos
Atrofia Óptica Hereditária de Leber , Doenças do Nervo Óptico , Masculino , Humanos , Criança , Adulto , Atrofia Óptica Hereditária de Leber/diagnóstico , Atrofia Óptica Hereditária de Leber/genética , Diagnóstico Diferencial , Potenciais Evocados Visuais , DNA Mitocondrial/genética
2.
PeerJ ; 12: e17018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618571

RESUMO

The African leopard (Panthera pardus pardus) has lost a significant proportion of its historical range, notably in north-western Africa and South Africa. Recent studies have explored the genetic diversity and population structure of African leopards across the continent. A notable genetic observation is the presence of two divergent mitochondrial lineages, PAR-I and PAR-II. Both lineages appeared to be distributed widely, with PAR-II frequently found in southern Africa. Until now, no study has attempted to date the emergence of either lineage, assess haplotype distribution, or explore their evolutionary histories in any detail. To investigate these underappreciated questions, we compiled the largest and most geographically representative leopard data set of the mitochondrial NADH-5 gene to date. We combined samples (n = 33) collected in an altitudinal transect across the Mpumalanga province of South Africa, where two populations of leopard are known to be in genetic contact, with previously published sequences of African leopard (n = 211). We estimate that the maternal PAR-I and PAR-II lineages diverged approximately 0.7051 (0.4477-0.9632) million years ago (Ma). Through spatial and demographic analyses, we show that while PAR-I underwent a mid-Pleistocene population expansion resulting in several closely related haplotypes with little geographic structure across much of its range, PAR-II remained at constant size and may even have declined slightly in the last 0.1 Ma. The higher genetic drift experienced within PAR-II drove a greater degree of structure with little haplotype sharing and unique haplotypes in central Africa, the Cape, KwaZulu-Natal and the South African Highveld. The phylogeographic structure of PAR-II, with its increasing frequency southward and its exclusive occurrence in south-eastern South Africa, suggests that this lineage may have been isolated in South Africa during the mid-Pleistocene. This hypothesis is supported by historical changes in paleoclimate that promoted intense aridification around the Limpopo Basin between 1.0-0.6 Ma, potentially reducing gene flow and promoting genetic drift. Interestingly, we ascertained that the two nuclear DNA populations identified by a previous study as East and West Mpumalanga correspond to PAR-I and PAR-II, respectively, and that they have come into secondary contact in the Lowveld region of South Africa. Our results suggest a subdivision of African leopard mtDNA into two clades, with one occurring almost exclusively in South Africa, and we identify the potential environmental drivers of this observed structure. We caution that our results are based on a single mtDNA locus, but it nevertheless provides a hypothesis that can be further tested with a dense sample of nuclear DNA data, preferably whole genomes. If our interpretation holds true, it would provide the first genetic explanation for the smaller observed size of leopards at the southernmost end of their range in Africa.


Assuntos
Panthera , Animais , Panthera/genética , África do Sul , Evolução Biológica , Deriva Genética , DNA Mitocondrial/genética
3.
PLoS One ; 19(4): e0300811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568891

RESUMO

Multi-locus genetic data for phylogeographic studies is generally limited in geographic and taxonomic scope as most studies only examine a few related species. The strong adoption of DNA barcoding has generated large datasets of mtDNA COI sequences. This work examines the butterfly fauna of Canada and United States based on 13,236 COI barcode records derived from 619 species. It compiles i) geographic maps depicting the spatial distribution of haplotypes, ii) haplotype networks (minimum spanning trees), and iii) standard indices of genetic diversity such as nucleotide diversity (π), haplotype richness (H), and a measure of spatial genetic structure (GST). High intraspecific genetic diversity and marked spatial structure were observed in the northwestern and southern North America, as well as in proximity to mountain chains. While species generally displayed concordance between genetic diversity and spatial structure, some revealed incongruence between these two metrics. Interestingly, most species falling in this category shared their barcode sequences with one at least other species. Aside from revealing large-scale phylogeographic patterns and shedding light on the processes underlying these patterns, this work also exposed cases of potential synonymy and hybridization.


Assuntos
Borboletas , Animais , Estados Unidos , Borboletas/genética , Filogeografia , DNA Mitocondrial/genética , DNA Mitocondrial/química , Mitocôndrias/genética , Haplótipos , Variação Genética , Código de Barras de DNA Taxonômico , Filogenia
4.
BMC Genomics ; 25(1): 322, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561677

RESUMO

BACKGROUND: Primulina hunanensis, a troglobitic plant within the Primulina genus of Gesneriaceae family, exhibits robust resilience to arid conditions and holds great horticultural potential as an ornamental plant. The work of chloroplast genome (cpDNA) has been recently accomplished, however, the mitochondrial genome (mtDNA) that is crucial for plant evolution has not been reported. RESULTS: In this study, we sequenced and assembled the P. hunanensis complete mtDNA, and elucidated its evolutionary and phylogenetic relationships. The assembled mtDNA spans 575,242 bp with 43.54% GC content, encompassing 60 genes, including 37 protein-coding genes (PCGs), 20 tRNA genes, and 3 rRNA genes. Notably, high number of repetitive sequences in the mtDNA and substantial sequence translocation from chloroplasts to mitochondria were observed. To determine the evolutionary and taxonomic positioning of P. hunanensis, a phylogenetic tree was constructed using mitochondrial PCGs from P. hunanensis and 32 other taxa. Furthermore, an exploration of PCGs relative synonymous codon usage, identification of RNA editing events, and an investigation of collinearity with closely related species were conducted. CONCLUSIONS: This study reports the initial assembly and annotation of P. hunanensis mtDNA, contributing to the limited mtDNA repository for Gesneriaceae plants and advancing our understanding of their evolution for improved utilization and conservation.


Assuntos
Genoma de Cloroplastos , Genoma Mitocondrial , Lamiales , Filogenia , DNA Mitocondrial/genética , Lamiales/genética , Mitocôndrias/genética
5.
Zoolog Sci ; 41(2): 216-229, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587917

RESUMO

The house shrew (Suncus murinus-S. montanus species complex) colonized regions across southern Asia and the Indian Ocean following human activity. The house shrew is distributed on islands of the Ryukyu Archipelago, the southernmost part of Japan, but the evolutionary history of the shrew on those islands and possible associations between these populations and humans remain unknown. In this study, we conducted phylogenetic and population genetic analyses based on both nuclear and mitochondrial genome sequences of house shrews. Phylogenetic analyses based on mitochondrial cytochrome b (cytb) sequences revealed that shrews from the Ryukyu Archipelago showed strong genetic affinity to Vietnamese and southern Chinese shrews. Demographic analyses of cytb sequences indicated a rapid population expansion event affecting the haplotype group in Vietnam, southern China, and the Ryukyu Archipelago 3300-7900 years ago. Furthermore, gene flow between Ryukyu (Yonaguni Island) and Taiwan and between Ryukyu and Vietnam inferred from f4 statistics of the nuclear genomes suggested repeated immigration to Ryukyu in recent years. The present study demonstrates that the Nagasaki population has a different origin from the Ryukyu population. These findings elucidate the complex pattern of genetic admixture in house shrews and provide insights into their evolutionary history.


Assuntos
DNA Mitocondrial , Musaranhos , Animais , Humanos , Filogenia , Japão , DNA Mitocondrial/genética , Musaranhos/genética , Genética Populacional
6.
Zoolog Sci ; 41(2): 177-184, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587912

RESUMO

Knowledge of the phylogeographic history of organisms is valuable for understanding their evolutionary processes. To the best of our knowledge, the phylogeographic structure of Hokuriku salamander, Hynobius takedai, an endangered species, remains unclear. This study aimed to elucidate the phylogeographic history of H. takedai, which is expected to be strongly influenced by paleogeographic events. Phylogenetic analysis based on partial sequences of the mitochondrial DNA cytochrome b gene confirmed the genetic independence of H. takedai, and the divergence time with closely related species was estimated to be from the Late Pliocene to the Early Pleistocene. In the phylogenetic tree, two clades were identified within H. takedai, and their haplotypes were found in samples collected from the west and east of the distribution range. These intraspecific divergences were strongly influenced by geohistorical subdivisions of the current major distribution areas in the Middle Pleistocene. One clade was further subdivided and its formation may have been influenced by sea level changes in the Late Pleistocene.


Assuntos
Anfíbios , Urodelos , Animais , Urodelos/genética , Filogenia , Filogeografia , DNA Mitocondrial/genética , Variação Genética , Análise de Sequência de DNA
7.
Genome Med ; 16(1): 50, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566210

RESUMO

BACKGROUND: Mitochondria play essential roles in tumorigenesis; however, little is known about the contribution of mitochondrial DNA (mtDNA) to esophageal squamous cell carcinoma (ESCC). Whole-genome sequencing (WGS) is by far the most efficient technology to fully characterize the molecular features of mtDNA; however, due to the high redundancy and heterogeneity of mtDNA in regular WGS data, methods for mtDNA analysis are far from satisfactory. METHODS: Here, we developed a likelihood-based method dMTLV to identify low-heteroplasmic mtDNA variants. In addition, we described fNUMT, which can simultaneously detect non-reference nuclear sequences of mitochondrial origin (non-ref NUMTs) and their derived artifacts. Using these new methods, we explored the contribution of mtDNA to ESCC utilizing the multi-omics data of 663 paired tumor-normal samples. RESULTS: dMTLV outperformed the existing methods in sensitivity without sacrificing specificity. The verification using Nanopore long-read sequencing data showed that fNUMT has superior specificity and more accurate breakpoint identification than the current methods. Leveraging the new method, we identified a significant association between the ESCC overall survival and the ratio of mtDNA copy number of paired tumor-normal samples, which could be potentially explained by the differential expression of genes enriched in pathways related to metabolism, DNA damage repair, and cell cycle checkpoint. Additionally, we observed that the expression of CBWD1 was downregulated by the non-ref NUMTs inserted into its intron region, which might provide precursor conditions for the tumor cells to adapt to a hypoxic environment. Moreover, we identified a strong positive relationship between the number of mtDNA truncating mutations and the contribution of signatures linked to tumorigenesis and treatment response. CONCLUSIONS: Our new frameworks promote the characterization of mtDNA features, which enables the elucidation of the landscapes and roles of mtDNA in ESCC essential for extending the current understanding of ESCC etiology. dMTLV and fNUMT are freely available from https://github.com/sunnyzxh/dMTLV and https://github.com/sunnyzxh/fNUMT , respectively.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , DNA Mitocondrial/genética , DNA Mitocondrial/análise , DNA Mitocondrial/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Funções Verossimilhança , Mitocôndrias/genética , Carcinogênese
8.
Mol Phylogenet Evol ; 195: 108070, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574781

RESUMO

We inventoried all nine species of the 'Acanthephyra purpurea' complex, one of the most abundant and cosmopolitan group of mesopelagic shrimps. We used 119 specimens at hand and genetic data for 124 specimens from GenBank and BOLD. Phylogenetic analysis of four genes (COI, 16S, NaK, and enolase) showed that the 'Acanthephyra purpurea' complex is polyphyletic and encompasses two species groups, 'A. purpurea' (mostly Atlantic) and 'A. smithi' (Indo-West Pacific). The 'A. purpurea' species group consists of two major molecular clades A. pelagica and A. kingsleyi - A. purpurea - A. quadrispinosa. Molecular data suggest that hitherto accepted species A. acanthitelsonis, A. pelagica, and A. sica should be considered as synonyms. The Atlantic is inhabited by at least two cryptic genetic lineages of A. pelagica and A. quadrispinosa. Morphological analyses of qualitative and quantitative (900 measurements) characters resulted in a tabular key to species and in a finding of four evolutionary traits. Atlantic species showed various scenarios of diversification visible on mitochondrial gene level, nuclear gene level, and morphological level. We recorded and discussed similar phylogeographic trends in diversification and in distribution of genetic lineages within two different clades: A. pelagica and A. kingsleyi - A. purpurea - A. quadrispinosa.


Assuntos
Acantocéfalos , Decápodes , Animais , Filogenia , DNA Mitocondrial/genética , Filogeografia , Evolução Biológica , Acantocéfalos/genética
9.
PLoS One ; 19(4): e0300754, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635543

RESUMO

Sika deer inhabiting South Korea became extinct when the last individual was captured on Jeju Island in Korea in 1920 owing to the Japanese seawater relief business, but it is believed that the same subspecies (Cervus nippon hortulorum) inhabits North Korea and the Russian Primorskaya state. In our study, mt-DNA was used to analyze the genetic resources of sika deer in the vicinity of the Korean Peninsula to restore the extinct species of continental deer on the Korean Peninsula. In addition, iSCNT was performed using cells to analyze the potential for restoration of extinct species. The somatic cells of sika deer came from tissues of individuals presumed to be Korean Peninsula sika deer inhabiting the neighboring areas of the Primorskaya state and North Korea. After sequencing 5 deer samples through mt-DNA isolation and PCR, BLAST analysis showed high matching rates for Cervus nippon hortulorum. This shows that the sika deer found near the Russian Primorsky Territory, inhabiting the region adjacent to the Korean Peninsula, can be classified as a subspecies of Cervus nippon hortulorum. The method for producing cloned embryos for species restoration confirmed that iSCNT-embryos developed smoothly when using porcine oocytes. In addition, the stimulation of endometrial cells and progesterone in the IVC system expanded the blastocyst cavity and enabled stable development of energy metabolism and morphological changes in the blastocyst. Our results confirmed that the individual presumed to be a continental deer in the Korean Peninsula had the same genotype as Cervus nippon hortulorum, and securing the individual's cell-line could restore the species through replication and produce a stable iSCNT embryo.


Assuntos
Cervos , Humanos , Animais , Suínos , Cervos/fisiologia , Oócitos/química , DNA Mitocondrial/genética , República Democrática Popular da Coreia , República da Coreia
10.
Biochemistry (Mosc) ; 89(2): 279-298, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38622096

RESUMO

An increase in mitochondrial DNA (mtDNA) mutations and an ensuing increase in mitochondrial reactive oxygen species (ROS) production have been suggested to be a cause of the aging process ("the mitochondrial hypothesis of aging"). In agreement with this, mtDNA-mutator mice accumulate a large amount of mtDNA mutations, giving rise to defective mitochondria and an accelerated aging phenotype. However, incongruously, the rates of ROS production in mtDNA mutator mitochondria have generally earlier been reported to be lower - not higher - than in wildtype, thus apparently invalidating the "mitochondrial hypothesis of aging". We have here re-examined ROS production rates in mtDNA-mutator mice mitochondria. Using traditional conditions for measuring ROS (succinate in the absence of rotenone), we indeed found lower ROS in the mtDNA-mutator mitochondria compared to wildtype. This ROS mainly results from reverse electron flow driven by the membrane potential, but the membrane potential reached in the isolated mtDNA-mutator mitochondria was 33 mV lower than that in wildtype mitochondria, due to the feedback inhibition of succinate oxidation by oxaloacetate, and to a lower oxidative capacity in the mtDNA-mutator mice, explaining the lower ROS production. In contrast, in normal forward electron flow systems (pyruvate (or glutamate) + malate or palmitoyl-CoA + carnitine), mitochondrial ROS production was higher in the mtDNA-mutator mitochondria. Particularly, even during active oxidative phosphorylation (as would be ongoing physiologically), higher ROS rates were seen in the mtDNA-mutator mitochondria than in wildtype. Thus, when examined under physiological conditions, mitochondrial ROS production rates are indeed increased in mtDNA-mutator mitochondria. While this does not prove the validity of the mitochondrial hypothesis of aging, it may no longer be said to be negated in this respect. This paper is dedicated to the memory of Professor Vladimir P. Skulachev.


Assuntos
DNA Mitocondrial , Mitocôndrias , Camundongos , Animais , DNA Mitocondrial/genética , Espécies Reativas de Oxigênio , Mitocôndrias/genética , Envelhecimento/genética , Mutação , Succinatos
11.
Cell Death Dis ; 15(4): 281, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643274

RESUMO

The human mitochondrial DNA polymerase gamma is a holoenzyme, involved in mitochondrial DNA (mtDNA) replication and maintenance, composed of a catalytic subunit (POLG) and a dimeric accessory subunit (POLG2) conferring processivity. Mutations in POLG or POLG2 cause POLG-related diseases in humans, leading to a subset of Mendelian-inherited mitochondrial disorders characterized by mtDNA depletion (MDD) or accumulation of multiple deletions, presenting multi-organ defects and often leading to premature death at a young age. Considering the paucity of POLG2 models, we have generated a stable zebrafish polg2 mutant line (polg2ia304) by CRISPR/Cas9 technology, carrying a 10-nucleotide deletion with frameshift mutation and premature stop codon. Zebrafish polg2 homozygous mutants present slower development and decreased viability compared to wild type siblings, dying before the juvenile stage. Mutants display a set of POLG-related phenotypes comparable to the symptoms of human patients affected by POLG-related diseases, including remarkable MDD, altered mitochondrial network and dynamics, and reduced mitochondrial respiration. Histological analyses detected morphological alterations in high-energy demanding tissues, along with a significant disorganization of skeletal muscle fibres. Consistent with the last finding, locomotor assays highlighted a decreased larval motility. Of note, treatment with the Clofilium tosylate drug, previously shown to be effective in POLG models, could partially rescue MDD in Polg2 mutant animals. Altogether, our results point at zebrafish as an effective model to study the etiopathology of human POLG-related disorders linked to POLG2, and a suitable platform to screen the efficacy of POLG-directed drugs in POLG2-associated forms.


Assuntos
DNA Polimerase Dirigida por DNA , Doenças Mitocondriais , Animais , Humanos , DNA Polimerase Dirigida por DNA/genética , Peixe-Zebra/genética , DNA Polimerase gama/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação/genética , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética
12.
Orphanet J Rare Dis ; 19(1): 148, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582886

RESUMO

BACKGROUND: Most patients suffering from Leber hereditary optic neuropathy carry one of the three classic pathologic mutations, but not all individuals with these genetic alterations develop the disease. There are different risk factors that modify the penetrance of these mutations. The remaining patients carry one of a set of very rare genetic variants and, it appears that, some of the risk factors that modify the penetrance of the classical pathologic mutations may also affect the phenotype of these other rare mutations. RESULTS: We describe a large family including 95 maternally related individuals, showing 30 patients with Leber hereditary optic neuropathy. The mutation responsible for the phenotype is a novel transition, m.3734A > G, in the mitochondrial gene encoding the ND1 subunit of respiratory complex I. Molecular-genetic, biochemical and cellular studies corroborate the pathogenicity of this genetic change. CONCLUSIONS: With the study of this family, we confirm that, also for this very rare mutation, sex and age are important factors modifying penetrance. Moreover, this pedigree offers an excellent opportunity to search for other genetic or environmental factors that additionally contribute to modify penetrance.


Assuntos
DNA Mitocondrial , Atrofia Óptica Hereditária de Leber , Humanos , DNA Mitocondrial/genética , Atrofia Óptica Hereditária de Leber/genética , Linhagem , Mutação/genética , Fenótipo
13.
Sci Rep ; 14(1): 7934, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575614

RESUMO

Biodistribution tests are crucial for evaluating the safety of cell therapy (CT) products in order to prevent unwanted organ homing of these products in patients. Quantitative polymerase chain reaction (qPCR) using intronic Alu is a popular method for biodistribution testing owing to its ability to detect donor cells without modifying CT products and low detection limit. However, Alu-qPCR may generate inaccurate information owing to background signals caused by the mixing of human genomic DNA with that of experimental animals. The aim of this study was to develop a test method that is more specific and sensitive than Alu-qPCR, targeting the mitochondrial DNA (mtDNA) sequence that varies substantially between humans and experimental animals. We designed primers for 12S, 16S, and cytochrome B in mtDNA regions, assessed their specificity and sensitivity, and selected primers and probes for the 12S region. Human adipose-derived stem cells, used as CT products, were injected into the tail vein of athymic NCr-nu/nu mice and detected, 7 d after administration, in their lungs at an average concentration of 2.22 ± 0.69 pg/µg mouse DNA, whereas Alu was not detected. Therefore, mtDNA is more specific and sensitive than Alu and is a useful target for evaluating CT product biodistribution.


Assuntos
DNA Mitocondrial , Mitocôndrias , Humanos , Camundongos , Animais , DNA Mitocondrial/genética , Distribuição Tecidual , Primers do DNA , Mitocôndrias/genética
14.
PLoS One ; 19(4): e0301392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578719

RESUMO

Despite is known to have widespread distribution and the most active species of the family Chlorocyphidae, the molecular data of Rhinocypha fenestrella (Rambur, 1842) are relatively scarce. The present study is the first that examined the genetic diversity and phylogeographic pattern of the peacock jewel-damselfly R. fenestrella by sequencing the cytochrome C oxidase I (cox1) and 16S rRNA gene regions from 147 individuals representing eight populations in Malaysia. A total of 26 and 10 unique haplotypes were revealed by the cox1 and 16S rRNA genes, respectively, and 32 haplotypes were recovered by the concatenated sequences of cox1+16S. Analyses indicated that haplotype AB2 was the most frequent and the most widespread haplotype in Malaysia while haplotype AB1 was suggested as the common ancestor haplotype of the R. fenestrella that may arose from the Negeri Sembilan as discovered from cox1+16S haplotype network analysis. Overall haplotype and nucleotide diversities of the concatenated sequences were Hd = 0.8937 and Pi = 0.0028, respectively, with great genetic differentiation (FST = 0.6387) and low gene flow (Nm = 0.14). Population from Pahang presented the highest genetic diversity (Hd = 0.8889, Pi = 0.0022, Nh = 9), whereas Kedah population demonstrated the lowest diversity (Hd = 0.2842, Pi = 0.0003, Nh = 4). The concatenated sequences of cox1+16S showed genetic divergence ranging from 0.09% to 0.97%, whereas the genetic divergence for cox1 and 16S rRNA genes were 0.16% to 1.63% and 0.01% to 0.75% respectively. This study provides for the first-time insights on the intraspecific genetic diversity, phylogeographic pattern and ancestral haplotype of Rhinocypha fenestrella. The understanding of molecular data especially phylogeographic pattern can enhance the knowledge about insect origin, their diversity, and capability to disperse in particular environments.


Assuntos
Variação Genética , Odonatos , Humanos , Animais , Filogenia , RNA Ribossômico 16S/genética , Odonatos/genética , Filogeografia , Haplótipos , DNA Mitocondrial/genética
15.
Medicine (Baltimore) ; 103(10): e37447, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457558

RESUMO

RATIONALE: Maternally inherited diabetes and deafness (MIDD) is a rare genetic disorder arising from mitochondrial DNA mutations, characterized by a combination of diabetes mellitus and sensorineural deafness. It is known that MIDD patients with cardiomyopathy have a poor prognosis, but there are no established guidelines for the diagnosis and follow-up of cardiomyopathy in MIDD patients. PATIENT CONCERNS: Patient 1 was a 48-year-old woman who visited the hospital with cardiomegaly and had been taking oral hypoglycemic agents for 8 years. Patient 2 was a 21-year-old man, the son of patient 1, who visited the hospital for genetic screening. Patient 2 was also diagnosed diabetes mellitus 2 years ago. DIAGNOSIS: Patient 1 was found to have restrictive cardiomyopathy on echocardiography and underwent endomyocardial biopsy and genetic testing to determine the etiology. The m.3243A>G mutation was confirmed and she was diagnosed with MIDD accompanied with diabetes and hearing loss. Additionally, patient 2 had m.3243 A>G mutation and was diagnosed with MIDD due to diabetes and hearing loss. INTERVENTIONS: Because MIDD does not have a specific treatment, patient 1 took ubidecarenone (coenzyme Q10), acetylcarnitine, and multivitamin along with the treatment for diabetes control and heart failure. Patient 2 was taking ubidecarenone (coenzyme Q10), acetylcarnitine, and multivitamin along with treatment for diabetes. OUTCOMES: She subsequently underwent routine transthoracic echocardiography, and a progressive decline in global longitudinal strain (GLS) was first observed, followed by a worsening of the patient's clinical situation. Patient 2 had concentric remodeling and decreased GLS. On periodic echocardiography, GLS decreased at a very slow rate, and the patient's clinical course was stable. LESSONS: The findings of this report contribute to the understanding of the clinical course of MIDD-associated cardiomyopathy and highlight the potential of GLS as a sensitive marker for disease progression.


Assuntos
Cardiomiopatias , Surdez , Diabetes Mellitus Tipo 2 , Perda Auditiva Neurossensorial , Perda Auditiva , Doenças Mitocondriais , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Adulto , Deformação Longitudinal Global , Acetilcarnitina , Mutação Puntual , Surdez/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Perda Auditiva Neurossensorial/complicações , Perda Auditiva/complicações , Cardiomiopatias/complicações , Progressão da Doença , DNA Mitocondrial/genética
16.
Zool Res ; 45(2): 292-298, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485499

RESUMO

Mutations in mitochondrial DNA (mtDNA) are maternally inherited and have the potential to cause severe disorders. Mitochondrial replacement therapies, including spindle, polar body, and pronuclear transfers, are promising strategies for preventing the hereditary transmission of mtDNA diseases. While pronuclear transfer has been used to generate mitochondrial replacement mouse models and human embryos, its application in non-human primates has not been previously reported. In this study, we successfully generated four healthy cynomolgus monkeys ( Macaca fascicularis) via female pronuclear transfer. These individuals all survived for more than two years and exhibited minimal mtDNA carryover (3.8%-6.7%), as well as relatively stable mtDNA heteroplasmy dynamics during development. The successful establishment of this non-human primate model highlights the considerable potential of pronuclear transfer in reducing the risk of inherited mtDNA diseases and provides a valuable preclinical research model for advancing mitochondrial replacement therapies in humans.


Assuntos
Doenças Mitocondriais , Doenças dos Roedores , Camundongos , Humanos , Feminino , Animais , Doenças Mitocondriais/genética , Doenças Mitocondriais/prevenção & controle , Doenças Mitocondriais/veterinária , Haplorrinos/genética , Mitocôndrias/genética , DNA Mitocondrial/genética , Primatas/genética
17.
Sci Rep ; 14(1): 7507, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553515

RESUMO

Multiple Sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system (CNS), with a largely unknown etiology, where mitochondrial dysfunction likely contributes to neuroaxonal loss and brain atrophy. Mirroring the CNS, peripheral immune cells from patients with MS, particularly CD4+ T cells, show inappropriate mitochondrial phenotypes and/or oxidative phosphorylation (OxPhos) insufficiency, with a still unknown contribution of mitochondrial DNA (mtDNA). We hypothesized that mitochondrial genotype in CD4+ T cells might influence MS disease activity and progression. Thus, we performed a retrospective cross-sectional and longitudinal study on patients with a recent diagnosis of either Clinically Isolated Syndrome (CIS) or Relapsing-Remitting MS (RRMS) at two timepoints: 6 months (VIS1) and 36 months (VIS2) after disease onset. Our primary outcomes were the differences in mtDNA extracted from CD4+ T cells between: (I) patients with CIS/RRMS (PwMS) at VIS1 and age- and sex-matched healthy controls (HC), in the cross-sectional analysis, and (II) different diagnostic evolutions in PwMS from VIS1 to VIS2, in the longitudinal analysis. We successfully performed mtDNA whole genome sequencing (mean coverage: 2055.77 reads/base pair) in 183 samples (61 triplets). Nonetheless, mitochondrial genotype was not associated with a diagnosis of CIS/RRMS, nor with longitudinal diagnostic evolution.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Linfócitos T , Estudos Transversais , Estudos Longitudinais , Estudos Retrospectivos , Esclerose Múltipla Recidivante-Remitente/genética , DNA Mitocondrial/genética , Linfócitos T CD4-Positivos , Genótipo
18.
Sci Rep ; 14(1): 7556, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555292

RESUMO

Nemipterus randalli, commonly known as Randall's threadfin bream, is a commercially important marine finfish. Understanding its genetic structure is critical to effective management and conservation efforts. Previous investigations on population structure in this species were limited by geographic coverage. In this study, we utilized the mitochondrial Cytochrome b gene and nuclear Ribosomal protein gene intron Rp S7 sequences to investigate the population genetic structure, demography and genetic diversity of N. randalli along Indian waters. Our results revealed high haplotype diversity but low nucleotide diversity. AMOVA revealed that the variation among the population was highly significant. Hierarchical AMOVA provided further evidence of significant genetic differentiation between the west and east coasts, which was corroborated by the Bayesian tree and the median-joining network diagram. The mtDNA sequences revealed significant genetic structure between populations based on fixation index analysis following the isolation-by-distance model. Furthermore, the neutrality test and mismatch analysis suggest that N. randalli populations may have experienced a population expansion. However, nuclear marker RpS7, showed a high level of polymorphism, which obscured the population structuring observed with the mitochondrial marker. Consequently, concordant results were not obtained when comparing the mitochondrial and nuclear DNA sequences. The strong genetic differentiation between the east and west coast observed using mitochondrial marker could be attributed to a combination of geographic and environmental factors. These findings lay the groundwork for developing effective conservation and management strategies for N. randalli, considering its genetic structure.


Assuntos
Peixes , Variação Genética , Animais , Filogenia , Teorema de Bayes , Peixes/genética , DNA Mitocondrial/genética , Genética Populacional , Estruturas Genéticas , Haplótipos/genética
19.
Genes (Basel) ; 15(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38540426

RESUMO

Mitochondria undergo a myriad of changes during pre-implantation embryo development, including shifts in activity levels and mitochondrial DNA (mtDNA) replication. However, how these distinct aspects of mitochondrial function are linked and their responsiveness to diverse stressors is not well understood. Here, we show that mtDNA content increased between 8-cell embryos and the blastocyst stage, with similar copy numbers per cell in the inner cell mass (ICM) and trophectoderm (TE). In contrast, mitochondrial membrane potential (MMP) was higher in TE than ICM. Culture in ambient oxygen (20% O2) altered both aspects of mitochondrial function: the mtDNA copy number was upregulated in ICM, while MMP was diminished in TE. Embryos cultured in 20% O2 also exhibited delayed development kinetics, impaired implantation, and reduced mtDNA levels in E18 fetal liver. A model of oocyte mitochondrial stress using rotenone showed only a modest effect on on-time development and did not alter the mtDNA copy number in ICM; however, following embryo transfer, mtDNA was higher in the fetal heart. Lastly, endogenous mitochondrial dysfunction, induced by maternal age and obesity, altered the blastocyst mtDNA copy number, but not within the ICM. These results demonstrate that mitochondrial activity and mtDNA content exhibit cell-specific changes and are differentially responsive to diverse types of oxidative stress during pre-implantation embryogenesis.


Assuntos
Variações do Número de Cópias de DNA , DNA Mitocondrial , Animais , Camundongos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Variações do Número de Cópias de DNA/genética , Potenciais da Membrana , Mitocôndrias/metabolismo , Estresse Oxidativo/genética , Desenvolvimento Embrionário/genética , Oxigênio/metabolismo
20.
Biomolecules ; 14(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540767

RESUMO

Mitochondria are essential organelles that possess their own DNA. Mitochondrial dysfunction has been revealed in many kidney diseases, including BK polyomavirus-associated nephropathy (BKPyVAN). In this study, we introduce an innovative approach for non-invasive monitoring of mitochondrial impairment through urinary donor-derived cell-free mitochondrial DNA (ddcfmtDNA), addressing the crucial challenge of BKPyVAN diagnosis. Urinary samples were collected at the time of biopsy from a total of 60 kidney transplant recipients, comprising 12 with stable function, 22 with T cell-mediated rejection, and 21 with biopsy-proven BKPyVAN. Our findings reveal that the ddcfmtDNA-to-ddcfDNA ratio exhibits superior capability in distinguishing BKPyVAN from other conditions, with a cutoff value of 4.96% (area under curve = 0.933; sensitivity: 71.4%; and specificity: 97.1%). Notably, an elevation of ddcfmtDNA levels is associated with mitochondrial damage, as visualized through electron microscopy. These results underscore the promise of non-invasive monitoring for detecting subtle mitochondrial damage and its potential utility in BKPyVAN diagnosis. Further investigations are required to advance this field of research.


Assuntos
Vírus BK , Transplante de Rim , Infecções por Polyomavirus , Infecções Tumorais por Vírus , Humanos , Transplante de Rim/efeitos adversos , Vírus BK/genética , Infecções Tumorais por Vírus/diagnóstico , Infecções Tumorais por Vírus/complicações , Infecções Tumorais por Vírus/patologia , Rejeição de Enxerto , Infecções por Polyomavirus/diagnóstico , Infecções por Polyomavirus/complicações , Infecções por Polyomavirus/patologia , Mitocôndrias/genética , DNA Mitocondrial/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...